Multi-Document Summarization by Maximizing Informative Content-Words

نویسندگان

  • Wen-tau Yih
  • Joshua Goodman
  • Lucy Vanderwende
  • Hisami Suzuki
چکیده

We show that a simple procedure based on maximizing the number of informative content-words can produce some of the best reported results for multi-document summarization. We first assign a score to each term in the document cluster, using only frequency and position information, and then we find the set of sentences in the document cluster that maximizes the sum of these scores, subject to length constraints. Our overall results are the best reported on the DUC-2004 summarization task for the ROUGE-1 score, and are the best, but not statistically significantly different from the best system in MSE-2005. Our system is also substantially simpler than the previous best system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Document Abstractive Summarization Using ILP Based Multi-Sentence Compression

Abstractive summarization is an ideal form of summarization since it can synthesize information from multiple documents to create concise informative summaries. In this work, we aim at developing an abstractive summarizer. First, our proposed approach identifies the most important document in the multi-document set. The sentences in the most important document are aligned to sentences in other ...

متن کامل

Multi-document Summarization Using Informative Words and Its Evaluation with a QA System

To reduce both the text size and the information loss during summarization, a multi-document summarization system using informative words is proposed. The procedure to extract informative words from multiple documents and generate summaries is described in this paper. At first, a smallscale experiment with 12 events and 60 questions was made. The results are evaluated by human assessors and a q...

متن کامل

A survey on Automatic Text Summarization

Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...

متن کامل

Global and Local Models for Multi-Document Summarization

In this paper we study the effectiveness of combining corpus-level (global) tag-topic models and target document set level local models for multi-document summarization. Recently tag-topic models that exploit both word level annotation (e.g. named entity type) and/or document level metadata (e.g. words related to topic categories) have been proposed to model documents tagged from two different ...

متن کامل

Automatic Multi Document Summarization Approaches

Problem statement: Text summarization can be of different nature ranging from indicative summary that identifies the topics of the document to informative summary which is meant to represent the concise description of the original document, providing an idea of what the whole content of document is all about. Approach: Single document summary seems to capture both the information well but it ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007